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Abstract:  Automating things has always been a part of development; it helps to make man’s life simpler, and in a few cases, lives 

of physically challenged people a lot simpler. The use of gesture recognition is one of the ways to automate things. Gesture 

recognition can be done in many ways, and the use of accelerometer and gyroscope sensors is one way to do it efficiently. Home 

automation is one of the use cases of gesture recognition, and after recognizing the gesture, each gesture is programmed to do a 

specific task on home appliances. 

 

Index Terms - Deep Learning, Gesture Recognition, IoT Applications, Home Automation, Accelerometer, Gyroscope, 

Neural Networks. 

I. INTRODUCTION 

A gesture is the movement of body parts to communicate an idea or message. Hand gestures are a common way of communication. 

Gesture recognition aims to interpret these human gestures via mathematical algorithms. This can help bridge a communication gap 

by translating the sign language or enable users to control or interact with devices without physically touching them. It is also 

possible for gesture recognition to replace conventional input methods in the majority of our everyday devices. 

We have worked on mapping gestures to perform various activities, for this purpose, the machine should be intelligent enough to 

identify the gesture in the first place and later that identified gesture can trigger an activity to perform. The applications of gesture 

recognition are vast and home automation is one of them, this home automation can be made more useful for physically challenged 

and could turn their lives a little less harder.  

II. METHODS OF RECOGNITION 

An important factor of gesture recognition is the method of gesture recognition. Keeping in mind the home automation 

application, the following methods were considered. 

1. Hand pose estimation using cameras [1]  

While pose estimation is a promising technique in gesture recognition, the use of cameras can pose a few problems. While 

attempting to control the appliances of an entire house using pose estimation, there are two ways of camera placement. One, placing 

the camera in a fixed position with limited coverage. This is inconvenient as we will have to position ourselves in the camera’s field 

of view to perform a gesture each time. Another option is to place multiple cameras to cover every angle. This is a possible security 

risk and invasion of privacy. 

2. Hand pose estimation using IR tracking [2] 

Gestures are mapped by the movement of the hand in the field of the InfraRed projection. Since the projection angle and area 

are fixed, we would have to move into its field of projection like with the cameras. This is again an inconvenience. 

3. Using the accelerometer and gyroscope sensors 

     These sensors return accelerometer and gyroscope[5][6] values along the x, y, and z axes recorded during the movement of a 

hand to form a gesture. Embedding these sensors in a wearable device simplifies gesture recognition. This allows gestures to be 

recorded from any location within the house and does not require constant supervision of the entire house. 
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III. DATASET COLLECTION AND TRANSFORMATION 

Hand gestures are mapped to the corresponding sensor values recorded during the motion of the hand, i.e., accelerometer and 

gyroscope sensor values along x, y, and z axes. These 6 values were recorded 100 times for each gesture, i.e., 600 data points for 

one gesture. 

In the real world implementation, the dataset would be recorded using Arduino, raspberry pi, etc. like devices. But due to the 

unavailability of such a device at hand, the sensors in the smartphones were used as an alternative.  

An android app was written to read the values and write to a text file along with the corresponding gesture name. Each gesture 

was one line of the file with 601 values (600 sensor values and one gesture name). The text files were then consolidated using the 

CSV library in python.  

The dataset was then normalized using the sklearn library, each sample independently (along axis 1). It has around 60 instances 

each of 8 recorded gestures – down-to-up, forward-clockwise, left-fall, up-clockwise, up-anticlockwise, left-to-right, right-to-left, 

forward-fall. 

 

Figure 1. Dataset 

This is the dataset with 477 rows and 601 columns. 

IV. VISUALIZATION 

The recorded data set is copied into a new variable, and few manipulations are made on the copied data in order to make it ready 

for visualization. The modified data set looks like the table below. 

 
Figure 2. Modified dataset for visualization purpose 

The data was separated for each gesture and visualization of the accelerometer and gyroscope data points is done separately for 

each gesture, respectively. Visualization was done with the help of matplotlib.pyplot 
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1. For Gyroscope axes points: 

 
Figure 3. Visualization of gyroscope points of ‘Down-to-up' gesture. 

 
Figure 4. Visualization of gyroscope points of 'Left-to-right' gesture. 
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2. For Accelerometer axes points: 

 
Figure 5. Visualization of accelerometer points of 'Down-to-up’ gesture. 

 
Figure 6. Visualization of gyroscope points of ‘Left-to-right’ gesture. 

    After visualizing, the data was analysed for any irregularities or outliers. One was found in the 'left_to_right' acceleration plot 

and removed. 
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V. BUILDING A DEEP NEURAL NETWORK. 

 

After performing EDA on data, the data is now ready for feeding it to a neural network.  

 

1. Categorical class labels to numerical. 

As the class labels were categorical in nature, One Hot encoding[7] was performed to convert them to numerical data. 

 
Figure 7. Features after One Hot encoding. 

Now, the data is suitable to feed it to the neural network. 

 

2. Creating a neural network model. 

    Now a sequential neural model is initialized and later 16 dense neurons were added to the 1st hidden layer with activation as 'relu' 

succeeding the input layer of size 600 in our case. Now two hidden layers are added later to the 1st hidden layer with 8 and 4 neurons 

to each layer in stage with activation as 'relu'. Now a final layer is added with a number of class labels as a number of neurons with 

activation as 'softmax'. 

 
Figure 8. Flow chart of the neural network. 
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VI. TRAINING AND TESTING 

    After the neural network is built, the training data is fit on the model with epoch equal to 256 and with batch_size equal to 32. 
Later, predictions on test data were found by using the trained neural network model for which accuracy of 98.9% with a loss of 

0.2 is achieved. After achieving a reliable accuracy, the model is saved using '.h5' extension. 

 

 
Figure 9. No.of Epochs vs Accuracy for both Training and Validation 

Figure 9 depicts the comparison between Training and Validation accuracy, when Accuracy is mapped against number of epochs. 

 
Figure 10. No.of Epochs vs Loss for both Training and Validation 

Figure 10 depicts the comparison between Training and Validation loss, when loss is mapped against number of epochs. 

From the above two graphs it is understood that there is no over fitting. 
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VII. USING DEEPC[3] 

1. Info and design of deepC[3] 

deepC is a deep learning compiler and inference framework to perform deep learning  in edge devices like raspberry pi, 

Arduino, node MCU, etc. deepC uses ONNX[4] as a frontend, which enables the compilation of deep learning models from popular 

frameworks like TensorFlow, PyTorch, Keras. In the backend, deepC[3] uses the LLVM compiler toolchain[8], which helps to 

produce optimized executables for resource-constrained devices. 

 
Figure 11. Design of deepC 

2. Compilation using deepC 

 

The saved model is compiled using the deepC compiler which gives us in machine code which can be dumped into resource-

constrained devices like Arduino. !deepCC gestureTinyModel.h5 command is used to compile the saved model. 

Now, when the model is running on an edge device, it recognizes the trained gestures, which can be further programmed to perform 

certain tasks per each gesture. 
 

VIII.  GESTURES USED IN THIS PROJECT AND THE TASKS MAPPED TO THEM. 

 

 
Figure 12. Tasks mapping with gestures. 

In our experiment, Forward Clockwise gesture is mapped to select Fan as the appliance and Down to Up gesture is mapped to select 

Light as the appliance. Now, Left Fall i.e. up to Left to Up gesture is mapped to on/off the selected appliance. Up Clockwise is to 

increase any parameter of a particular appliance, for example, to increase speed of Fan. Up Anti-clockwise to decrease any parameter 

of a selected appliance, for example, to decrease the speed of Fan. Left to right gesture maps to instance count increase for example, 

Fan-1 to Fan-2 and right to left gesture maps decrease in instance count for example, Fan-2 to Fan-1 and Forward Fall gesture maps 

to next scenario. 
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IX. HOME AUTOMATION APPLICATION 

 This is a POC for gesture-based home automation system - controlling the various appliances at home with hand gestures. 
The aim is to embed the sensors in a wearable device. We move our hands in so many different ways, and there is a high chance 

that one of these many movements map to the recorded gestures and trigger responses. To counter this, we can include a tiny 

button/other mechanisms to indicate the start of the gesture. 
    Each appliance type, the set of operations for the appliances and a few other operations necessary for the home automation system 

(moving between instances of an appliance, like fan1 to fan2 or fan2 to fan1, or switching between appliance types) are mapped to 

corresponding gestures. A list of appliances installed at home and the status of the individual instances are maintained. 
Each gesture performed is recognized, and its validity in reference to the previous gestures is checked. If it is valid, the operation 

is performed and logged.  
 

 
Figure 13. This is a sample of the sequence of operations performed using the gesture recognition system and the 

subsequent home automation logic. 
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